
Django Dynamic Fixtures
Documentation

Release 0.2.1

Peter Slump

Sep 29, 2018

Contents

1 Changelog 3

2 Installation 5

3 Write fixtures 7

4 List fixtures 9

5 Load fixtures 11

6 Dry-run 13

7 Dependencies 15

8 Gotcha’s 17

i

ii

Django Dynamic Fixtures Documentation, Release 0.2.1

Django Dynamic Fixtures is a Django app which gives you the ability to setup fixture-data in a more dynamic way.
Static fixtures are sometimes too static in a way that for example even the primary keys are static defined, this can be
very hard to maintain especially in bigger projects. Another example; when your application depends on data with a
recent timestamp your static fixtures can get ‘outdated’.

For all these issues Django Dynamic Fixtures has a solution and even more!

Features:

• Write fixtures in Python;

• Load fixtures which are required for your task;

• Manage fixture Dependencies.

Contents 1

https://github.com/Peter-Slump/django-dynamic-fixtures

Django Dynamic Fixtures Documentation, Release 0.2.1

2 Contents

CHAPTER 1

Changelog

0.2.0

• Added time elapsed per fixture

• Dry-run mode

• List available fixtures

• Run all fixtures in an transaction

• Removed support for Django 1.7

• Added support for Django 2.0

3

Django Dynamic Fixtures Documentation, Release 0.2.1

4 Chapter 1. Changelog

CHAPTER 2

Installation

First install the package:

$ pip install django-dynamic-fixtures

Add the app to your project’s settings.py file:

settings.py
INSTALLED_APPS = [

...,
'dynamic_fixtures'

]

Or make sure the app is not loaded on production:

settings.py
if DEBUG:

INSTALLED_APPS = INSTALLED_APPS + ['dynamic_fixtures']

5

Django Dynamic Fixtures Documentation, Release 0.2.1

6 Chapter 2. Installation

CHAPTER 3

Write fixtures

All fixtures are written in .py files the fixtures-module of your app.

Recommended is to prefix the fixture files with numbers just like you probably already know from the Django migra-
tions.:

Inside the fixture file you have to create a class called Fixture. This class should extend from
dynamic_fixtures.fixtures.basefixture.BaseFixture .

In this class you define at least the load-method. In this method your are free to setup your fixture data in a way you
like:

#my_django_project/my_app/fixtures/0001_create_example_author.py
from dynamic_fixtures.fixtures import BaseFixture

from my_app.models import Author

class Fixture(BaseFixture):

def load(self):
Author.objects.create(name="John Doe")

7

https://docs.djangoproject.com/en/1.7/topics/migrations/#migration-files
https://docs.djangoproject.com/en/1.7/topics/migrations/#migration-files

Django Dynamic Fixtures Documentation, Release 0.2.1

8 Chapter 3. Write fixtures

CHAPTER 4

List fixtures

To list all existing fixtures you can call the management command load_dynamic_fixtures with an argument –list:

$./manage.py load_dynamic_fixtures --list

The output may help to find out the reason why a fixture wasn’t loaded.

9

Django Dynamic Fixtures Documentation, Release 0.2.1

10 Chapter 4. List fixtures

CHAPTER 5

Load fixtures

To load the fixtures you can call the management command load_dynamic_fixtures:

$./manage.py load_dynamic_fixtures

You can also specify which fixtures you want to load. In this case the requested fixture will be loaded plus all depending
fixtures. This ensures that you always have a valid data-set:

$./manage.py load_dynamic_fixtures my_app 0001_create_example_author

Or load all fixtures for a given app:

$./manage.py load_dynamic_fixtures my_app

11

Django Dynamic Fixtures Documentation, Release 0.2.1

12 Chapter 5. Load fixtures

CHAPTER 6

Dry-run

You can test your fixtures in dry-run mode. Add the –dry-run argument to the management command. Fixtures will
loaded as without dry-run enabled however the transaction will be rolled back at the end:

$./manage.py load_dynamic_fixtures --dry-run

13

Django Dynamic Fixtures Documentation, Release 0.2.1

14 Chapter 6. Dry-run

CHAPTER 7

Dependencies

It’s also possible to maintain dependencies between fixtures. This can be accomplished in the same way as Django
migrations:

#my_django_project/my_app/fixtures/0002_create_example_books.py
from dynamic_fixtures.fixtures import BaseFixture

from my_app.models import Book

class Fixture(BaseFixture):

dependencies = (
('my_app', '0001_create_example_author'),

)

def load(self):
author = Author.objects.get(name='John Doe')

Book.objects.create(title="About roses and gladiolus", author=author)
Book.objects.create(title="The green smurf", author=author)

The library take care that the depending fixture is loaded before this one, so you know for sure that the entity is
available in the database.

15

https://docs.djangoproject.com/en/1.7/topics/migrations/#migration-files
https://docs.djangoproject.com/en/1.7/topics/migrations/#migration-files

Django Dynamic Fixtures Documentation, Release 0.2.1

16 Chapter 7. Dependencies

CHAPTER 8

Gotcha’s

A really powerful combination is a combination of this library and Factory Boy. In the example below 50 authors will
get created from factories.:

#my_django_project/my_app/fixtures/0001_create_example_author.py
from dynamic_fixtures.fixtures import BaseFixture

from my_app.factories import AuthorFactory

class Fixture(BaseFixture):

def load(self):
AuthorFactory.create_batch(size=50)

17

https://github.com/rbarrois/factory_boy

	Changelog
	Installation
	Write fixtures
	List fixtures
	Load fixtures
	Dry-run
	Dependencies
	Gotcha's

